
i

Contents

 Text Layout Framework Overview

The Challenge of Typography on the Web . 1

How TextField has Pushed the Envelope . 1

What the New Text Layout Framework Offers . 2

The Structure of the Text Layout Framework . 3

Architecture of the Text Layout Framework . 4

The Text Layout Core Component . 4

The Text Layout Conversion Component . 10

The Text Layout Edit Component . 12

1

Text Layout Framework Overview

The Challenge of Typography on the Web

Typography has a long and colorful history that stretches back beyond the advent of the printing press. Techniques for

arranging letterforms on the printed page have been refined through the centuries and passed down to typographers

who now practice the art with computers and laser printers. And yet, much of typography’s expressive power has yet

to be realized by web developers.

To better understand the challenges faced by typographers on the web, it may help to consider three factors that

contribute to the difficulty of applying standard typographical techniques to the web. First, text on the web is dynamic.

Readers can resize windows and change font sizes. This stands in stark contrast to the permanence of the printed page

and makes it difficult to apply techniques to the web that were developed for a fixed medium. Second, the lack of strict

adherence to web standards among browser vendors makes it difficult to ensure that a particular typographic design

will be rendered uniformly across various browsers and platforms. Third, there is no way to ensure that a specific font

is available to all browsers that may view your content.

These factors are compounded by the limited set of tools available to web designers. HyperText Markup Language

(HTML) provides very limited typographical support. Although the emergence of Cascading Style Sheets (CSS) has

helped to a limited extent by making it easier for web designers to assign specific fonts and type sizes to text throughout

a document, CSS does not ensure that a specific font you choose will be available to all who view your web site.

Moreover, each browser has an idiosyncratic implementation of both HTML and CSS, which can differ even among

different versions of the same browser. To achieve a consistent look and feel across all browsers, a web designer must

either employ complicated scripts to detect browsers and versions or use only the few tags and properties that are

common to all browsers.

To a great extent, Flash Player offers web designers a compelling alternative to HTML and CSS. Flash Player provides

better control over text attributes than does HTML and CSS. Moreover, as a browser plug-in that is not affected by the

idiosyncrasies of specific browsers, Flash Player also makes it much easier to ensure a uniform look and feel across

browsers and platforms. Perhaps the most significant advantage, however, is that a web designer can embed specific

fonts into Flash contents.

How TextField has Pushed the Envelope

The TextField class, which first appeared as the TextField object in Flash Player 6, has been the cornerstone of Flash

text handling up to and including Flash Player 9. The TextField class is relatively simple to use, and provides

typographic control through the TextFormat and StyleSheet classes.

The TextField class, when used in combination with embedded fonts, was a step forward for web designers who wanted

to use a specific font and to have some control over how the font is displayed. In fact, this combination served as the

basis for an open source technique called Scalable Inman Flash Replacement (sIFR), which allows web designers to

embed specific fonts into web content. The sIFR approach uses JavaScript to embed a SWF that replaces a small run

of text within a larger body of text content. Before sIFR was invented, web designers who wanted to use a specific font

for a short run of text, usually a headline, would have to create an image of the text and place that image into their web

content in place of the text. The problem with text as an image is that the text size cannot change when the web page

is resized and the text is not selectable, whereas the sIFR technique results in selectable text that can scale with the rest

of the page.

2ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

The sIFR technique is a good example of how the TextField class was used to advance typography on the web. The

technique also takes advantage of a key strength of the TextField class: Flash Player handles TextField instances that

contain simple runs of static text with extreme efficiency. Longer runs of text, support for global scripts and more

advanced typography, however, call for a more powerful text engine than the one used by the TextField class. Flash

Player 10 provides such an engine, accessible through the new Text Layout Framework.

What the New Text Layout Framework Offers

Although TextField's ease of use and small memory footprint make it a good choice for small static text runs even in

Flash Player 10, web designers eager for more advanced typography should use the new Text Layout Framework.

The Text Layout Framework is a set of ActionScript 3.0 libraries with support for complex scripts and advanced

typographic and layout features not available in the TextField class.

Complex Script Support

Complex script support includes the ability to display and edit not only right-to-left scripts, but also a mixture of left-

to-right and right-to-left scripts such as Arabic and Hebrew. The framework not only supports vertical text layout for

Chinese, Japanese and Korean, but also supports tate-chu-yoko (TCY Elements), which are blocks of horizontal text

embedded in to vertical runs of text. The following scripts are supported:

• Latin (English, Spanish, French, Vietnamese, etc.)

• Greek, Cyrillic, Armenian, Georgian, Ethiopic

• Arabic, Hebrew

• Han ideographs and Kana (Chinese, Japanese & Korean) & Hangul Johab (Korean)

• Thai, Lao, Khmer

• Devanagari, Bengali, Gurmukhi, Malayalam, Telugu, Tamil, Gujarati, Oriya, Kannada, Tibetan

• Tifinagh, Yi, Cherokee, Canadian Syllabics, Deseret, Shavian, Vai, Tagalog, Hanunoo, Buhid, Tagbanwa

Advanced Typographic and Layout Features

Advanced Typographic support and Layout features include:

• Advanced text styling such as ligatures, typographic case, digit case, and digit width

• Advanced text layout control of kerning, tracking, leading, superscript, subscript, and baseline shift.

• Multiple columns of text, with each column considered a container of text

• Threaded text containers that support text that flows from one container to the next

• Inline graphics that are treated as characters within a text flow

• Support for tabs

For detailed descriptions and examples of the new text styling and text layout control features, see the Text Layout

Component for Flash CS4 Professional Overview.

http://www.adobe.com/go/textlayout_flashcomponent_overview
http://www.adobe.com/go/textlayout_flashcomponent_overview

3ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Flash Player 10 Required

The Text Layout Framework requires Flash Player 10 or later because the framework is built on Flash Player 10’s new

text engine (FTE). FTE can be accessed through the flash.text.engine package, which is part of the Flash Player 10

Application Programming Interface (API). The Flash Player API, however, provides very low-level access to the text

engine, which means that some tasks can require a tremendous amount of code. When an API provides such low-level

access, it is often helpful to have a software framework like the Text Layout Framework that not only encapsulates the

low-level code into simpler APIs, but that also provides a conceptual architecture that organizes the basic building

blocks defined by FTE into a system that is easy to use.

Unlike FTE, the Text Layout Framework is not built into Flash Player. Rather, it is an independent set of components

written entirely in ActionScript 3.0 and is designed for use with both Flash CS4 and Flex Gumbo. Although the

framework is designed for use with Flash CS4 and Flex Gumbo, it is not dependent on them. For example, if you use

Flash CS4, there are two ways you can use the Text Layout Framework. If you prefer to drag-and-drop a text

component on to the stage, you can use the new Flash CS4 TextLayout component that was created specifically for

Flash CS4 based on the Text Layout Framework. Just to be clear, the TextLayout component is specific to Flash CS4

and is based on, but is not part of, the Text Layout Framework. If you prefer to use the Text Layout Framework directly

to code in pure ActionScript 3.0, you can also do that in Flash CS4 as long as you ensure that the three components

that comprise the Text Layout Framework are in your Flash CS4 library path. Similarly, if you use Flex Gumbo, you

also have two options. You can either use the new FxTextArea component, which is based on the Text Layout

Framework, or you can use the Text Layout Framework directly to code in pure ActionScript 3.0. Moreover, because

Flex 3.2 supports Flash Player 10, you can even use the Text Layout Framework directly in Flex 3.2.

The Structure of the Text Layout Framework

The Text Layout Framework consists of three separate components:

• textLayout_core.swc

• textLayout_conversion.swc

• textLayout_edit.swc

The textLayout_core component (hereinafter the “core component”) is the central component in the framework in

that it handles the storage of text, the creation of text containers, and the display of text. You cannot use the Text

Layout Framework without this core component. Not surprisingly, this component contains the majority of the code

that comprises the framework.

The textLayout_conversion component (hereinafter the “conversion component”) is used to import text into the

framework and export text out of the framework. This component is necessary if you intend to use text that is not

compiled directly into the SWF.

The textLayout_edit component (hereinafter the “edit component”) is used to edit text that is stored in the core

component. This component is necessary if you intend to make your text selectable or editable, or to allow your user

to undo such editing.

All of the classes that comprise the framework can be found in subpackages of the flashx.textLayout package. For

example, the classes that handle the storage of text can be found in the flashx.textLayout.elements package,

whereas the classes that handle the creation of text containers can be found in the flashx.textLayout.containers

package. All told, there are ten such subpackages, the names of which will make more sense to you as you learn more

about the structure of the Text Layout Framework.

4ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Architecture of the Text Layout Framework

To understand the architecture of the Text Layout Framework, it may help to understand the Model-View-Controller

(MVC) design pattern. While the Text Layout Framework does not strictly adhere to the MVC pattern, the similarities

are strong enough that understanding MVC will make it much easier to understand the architecture of the Text Layout

Framework.

The MVC pattern calls for the separation of source code into modules that serve one of three purposes. The first

module, the model, contains not only the raw data but also the set of rules that provide both structure and access to

the raw data. The second module, the view, handles presentation of the data to the user. The third module, the

controller, interprets interactions between the user and the view and translates user gestures, such as selecting or

editing content, into commands to change data in the model. Generally there is only one model in a framework, but

there can be several pairs of views and controllers.

The model for the Text Layout Framework is defined mainly by the elements package, which includes classes and

interfaces that define the data structure that holds the text. The formats package is also part of the model because

formatting information is stored as part of the model. The conversion class can also be considered part of the model

in that it embodies the rules for how data is imported into and exported out of the model.

The view for the Text Layout Framework includes three packages that facilitate the rendering of text for display by

Flash Player. The factory package provides a simple way to display static text. The container package includes classes

and interfaces that define display containers for dynamic text. The compose package defines techniques for

positioning and displaying dynamic text in containers.

The controller for the Text Layout Framework includes two packages that handle user interactions with the model.

The edit and operations packages define classes that you can use to allow editing of text stored in the model.

The Text Layout Core Component

The core component embodies both the model and view of the Text Layout Framework. In this section we first

examine the model's internal data structure and how text and text attributes are stored. Next, we take a closer look at

the framework's view and introduce the flow composer, which composes text into container objects to render the text

for viewing.

Text Flow Hierarchy

The model uses a hierarchical tree to represent text. Each node in the tree is an instance of a class defined in the

elements package. For example, the root node of the tree is always an instance of the TextFlow class. The TextFlow

class represents an entire story of text. The term story comes from page layout programs like PageMaker and InDesign,

and refers to a collection of text that should be treated as one unit, or flow, even if the flow requires more than one

column or text container to display.

Apart from the root node, the remaining elements are loosely based on XHTML elements. For example, the root node

of the hierarchy can have children of only two types, which are defined by the classes DivElement and

ParagraphElement. DivElements and ParagraphElements are similar, but not identical, to the <div /> and <p />

XHTML elements. DivElements are more narrowly defined than the <div /> XHTML element in that DivElements can

contain only ParagraphElements and DivElements whereas the <div /> XHTML element can contain a wider variety

of elements, including actual text. Fortunately, this difference is automatically handled for you during the import

process. Text that is a direct child of a <div /> XHTML element is converted during import into a ParagraphElement

with a child SpanElement that contains the text.

5ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Like DivElements, ParagraphElements are also grouping elements that cannot directly contain text or graphics.

ParagraphElements can, however, contain four types of child elements that do directly contain primitive text and

graphics:

• The SpanElement class represents runs of text that share common formatting.

• The InlineGraphicElement class represents graphic elements that are treated as single characters in a line of text.

• The LinkElement class represents hypertext links, and are similar to <a /> XHTML elements. Links can contain one

or more SpanElements, InlineGraphicElement or TCYElements.

• The TCYElement class represents short runs of text that are perpendicular to the rest of the line, usually small runs

of horizontal text within vertical text lines. For example, you would use a TCYElement to represent a horizontal

run of digits in an otherwise vertically oriented run of Japanese characters. A TCYElement can contain one or more

SpanElements.

The hierarchy of the core component model is shown in the graphic below. Understanding this hierarchy is an

important foundation for successful programming with the framework.

TextFlow Hierarchy

Understanding the structure of the core component model is also helpful when dealing with Text Layout Framework

Markup, which is an XML representation of text that is part of the Text Layout Framework. Although the framework

also supports other XML formats, the framework markup is unique in that it is based specifically on the structure of

the TextFlow hierarchy. If you choose to export XML from a TextFlow using this markup format, the XML will be

exported with this hierarchy intact.

You should also be aware that once you do start programming with the classes that define the nodes of this hierarchy,

you will encounter a second hierarchy that relates these classes to one another. If you are familiar with Object Oriented

Programming (OOP), you will recognize it as an inheritance hierarchy. All of the classes mentioned in this section

derive—either directly or indirectly—from a class named FlowElement. This inheritance hierarchy is orthogonal to

the model's text flow hierarchy. The two hierarchies intersect just enough to sow confusion in some, but in fact are

largely independent.

6ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Formats and FlowElements

You can assign formats to any FlowElement in the text flow hierarchy tree, from the root TextFlow instance down to

the “leaves” (SpanElements, InlineGraphicElements, LinkElements, and TCYElements). The types of formatting that

you can assign vary by context. For example, a format such as indent or margin naturally applies only to paragraphs,

whereas a format such as font size would make sense to apply to individual characters or to paragraphs or even to the

entire TextFlow. To make it easier to work with formats, the framework groups them into three categories: container,

paragraph, and character.

Container formats apply exclusively to an entire container of text. Containers are discussed in the next section, but for

now you can think of a container simply as a holder of text. Container attributes include settings such as padding

values, column properties, line breaking and vertical alignment. You can apply container formats only to instances of

the TextFlow, DivElement, and classes that implement the IContainerController interface, such as the

DisplayObjectControllerContainer class. All of the container formats are conveniently bundled into the

ContainerFormat class. There are two ways to apply container formatting. If you have a several formats to apply at one

time, you can use the ContainerFormat class to create a special formatting object that contains all of the formatting

values you want. You can then assign that object to the containerFormat property of any TextFlow, DivElement, or

IContainerController object. Alternatively, you can set individual container formats on any TextFlow, DivElement or

IContainerController. Each of these three classes or interfaces has a set of write-only properties that you can use to

directly assign new container format values.

Paragraph formats are formats that apply to an entire paragraph of text, but that do not logically apply to individual

characters. For example, paragraph formats include formats such as justification, margins, and tab stops. You can

apply paragraph attributes only to instances of the ParagraphElement, DivElement, and TextFlow classes. Just as there

is a ContainerFormat class for containers, there is also a ParagraphFormat class that you can use to apply paragraph

formatting to paragraphs. You can assign an instance of the ParagraphFormat class to the paragraphFormat property

of any ParagraphElement, DivElement, or TextFlow instance. Alternatively, you can set individual paragraph formats

on any instance of ParagraphElement, DivElement or TextFlow by using the appropriate write-only property

associated with that format.

Character formats are formats that apply to a single character or run of characters. Character formats include formats

such as font size and color, tracking, kerning, and superscript. See the CharacterFormat class for a complete list of all

character attributes. You can assign character formats to any FlowElement, which makes it easy to apply character

formats to entire paragraphs or TextFlow instances. Character formats can be applied in the same two ways that

paragraph formats can be applied. You can either create a CharacterFormat object and assign that object to any

FlowElement’s characterFormat property or you can assign individual character format values to any FlowElement

instance by setting the appropriate write-only property on that instance.

Container, paragraph and character formats are inherited in accord with the TextFlow hierarchy. If you assign an

instance of ContainerFormat to an entire TextFlow, every DisplayObjectContainerController in that TextFlow

inherits the values of that instance. For example, if you set the padding value for a container at the TextFlow level, the

setting applies to all containers in the TextFlow. You can, however, override the value in a given container by assigning

a new value directly to the container.

If you assign an instance of ParagraphFormat to an entire TextFlow, every paragraph in that TextFlow inherits the

values of that ParagraphFormat instance. For example, if you assign left and right margin values to an entire TextFlow,

every paragraph in that TextFlow will inherit those values. But say that you later realize that one of the paragraphs in

the text flow is a block quote and should be indented more than the other paragraphs. Fortunately, inherited attributes

can be easily overridden by directly assigning a different instance of ParagraphFormat to a specific paragraph. To fix

the indentation for the block quote, you need only create a new instance of ParagraphFormat that has new left and

right margin values and assign that instance to the block quote paragraph. Attributes assigned directly to a

FlowElement always take precedence over inherited attributes.

7ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Character attributes are inherited in the same way. If you assign an instance of CharacterFormat to an entire TextFlow,

every SpanElement, LinkElement, InlineGraphicElement, and TCYElement inherits those attributes. For example, if

you want to use a specific font for all the text in your TextFlow, either assign that font value to an instance of

CharacterFormat and then assign that CharacterFormat instance to the TextFlow or directly assign the font to the

TextFlow’s fontFamily property. All text in the entire TextFlow will be rendered with that font. As with paragraph

attributes you can override the inherited value by assigning a new value directly to a SpanElement, LinkElement, etc.

There may also arise situations where you have assigned CharacterFormat values to an entire TextFlow, but you later

decide that an entire paragraph should have different attribute values. Fortunately, you do not have to override the

attributes for each individual FlowElement that is a child of the ParagraphElement. Instead, you can create a new

instance of CharacterFormat and assign it to the ParagraphElement. All text in that paragraph will be rendered with

the new attribute values because FlowElements always inherit attribute values from their most immediate ancestor.

This feature makes it easier to manage formatting in separate parts of a TextFlow. For example, you can separate your

TextFlow into two or more DivElements, each with a different set of formatting objects.

One thing to keep in mind when assigning formatting values is that assigning a formatting object to a FlowElement

overrides any values that were previously set not only by a previous formatting object, but also by direct assignment.

For example, if you directly assign the fontSize value of a SpanElement using the SpanElement’s fontSize property,

then later create a CharacterFormat object and assign it to the SpanElement’s characterFormat property, the

SpanElement takes on the fontSize value found in the CharacterFormat object. This is significant because every

property of the CharacterFormat object has the value null by default, which means that you could inadvertently

change the font size of your SpanElement. The following example shows an example of this scenario, in which the

fontSize property is set to null by the assignment of a CharacterFormat object:

var span:SpanElement = new SpanElement();
span.text = "Hello, World";
span.fontSize = 48;
var ca:CharacterFormat = new CharacterFormat();
ca.fontFamily = "Helvetica";
span.characterFormat = ca;

The assignment of the CharacterFormat object resets the value of fontSize to null, which means that the value is now

inherited from an ancestor element. To preserve the value of the fontSize property, send the SpanElement’s existing

CharacterFormat object as an argument to the CharacterFormat’s constructor:

var span:SpanElement = new SpanElement();
span.text = "Hello, World";
span.fontSize = 48;
var cf:CharacterFormat = new CharacterFormat(span.characterFormat);
cf.fontFamily = "Helvetica";
span.characterFormat = cf;

Displaying Text

Now that we have seen how text is stored in the model, we turn to how the text is displayed by the view. Somehow, the

text that is stored in the flow hierarchy must be converted into a format that Flash Player can display. The Text Layout

Framework offers two ways to go about this—a simple approach suitable for displaying static text and a more

complicated approach that allows for selection and editing of the text. In both cases, the text is ultimately converted

into instances of the TextLine class, which is part of the new flash.text.engine package in Flash Player 10.

8ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Rendering with TextLineFactory

The simple approach uses the TextLineFactory class, which can be found in the flashx.textLayout.factory package. The

advantage of this approach, beyond its simplicity, is that it has a smaller memory footprint than does the

FlowComposer approach. This approach is advisable for static text that does not need to be edited or even selected and

that fits within its display area without the need for scrolling.

The TextLineFactory class provides a static method named createTextLinesFromTextFlow() that converts the text

from a TextFlow instance into a series of TextLine instances that are ready to be displayed. This approach involves a

simple three step process. First, create a Rectangle instance to serve as the bounding box for the text. Second, create a

callback function to be called after the createTextLinesFromTextFlow() method creates each TextLine instance.

The callback function must add the TextLine instance to the Flash Player display list. Third, invoke the

creatTextLinesFromTextFlow() method with three arguments: the name of your callback function, the name of

your TextFlow instance, and the name of your bounding rectangle. The following example, which assumes that a

TextFlow instance named myFlow already exists, demonstrates how this might look:

// assumes an existing TextFlow instance named myFlow
import flashx.textLayout.factory.TextLineFactory;
import flashx.textLayout.elements.TextFlow;
import flash.text.engine.TextLine;
import flash.geom.Rectangle;
// first, create a bounding rectangle
var bounds:Rectangle = new Rectangle(0,0,300,100);
// second, create a callback function
function callback(txLine:TextLine):void{ addChild(txLine); }
// third, call createTextLinesFromTextFlow()
TextLineFactory.createTextLinesFromTextFlow(callback, myFlow, bounds);

Rendering with Flow Composer

The simple approach may be all you need, but if you want to have more control over the display of the text, or if you

want to give your user the ability to select and edit the text, you need to use something called a flow composer instead.

A flow composer—which is an instance of the StandardFlowComposer class in the flashx.textLayout.compose

package—is an object that manages not only the conversion of your TextFlow into TextLine instances, but also the

placement of those TextLine instances into one or more containers.

An IFlowComposer has zero or more IContainerControllers

Every TextFlow instance has a corresponding object that implements the IFlowComposer interface. This

IFlowComposer object is accessible through the TextFlow.flowComposer property. Through this property, you can

call methods defined by the IFlowComposer interface that allow you to associate the text with one or more containers

and prepare the text for display within a container.

Note: Currently only one class in the framework, StandardFlowComposer, implements the IFlowComposer interface.
This means that for now, the TextFlow.flowComposer property, is either null or points to an instance of
StandardFlowComposer. In the future, there may be new classes added to the framework that also implement
IFlowComposer.

9ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

A container is simply an instance of the Sprite class, which is a subclass of the DisplayObjectContainer class. Both of

these classes are part of the Flash Player display list API. If you are unfamiliar with the Flash Player display list, you

can think of a DisplayObjectContainer as a container of objects that are in a format that Flash Player can render.

You can think of a container as a more advanced form of the bounding Rectangle used in the simple approach to

displaying the TextFlow. Like the bounding Rectangle, a container circumscribes the area where TextLine instances

will appear. Unlike a bounding Rectangle, a container can have scrolling enabled so that users can simply scroll

downward to read text that does not fit into the container. Alternatively a container can be linked to another container

such that text that would otherwise overflow the container simply appears in the linked container. Another advantage

of using containers is that containers can have formatting applied in the same way that you apply formatting to a

FlowElement. You can create an instance of the ContainerFormat class and apply it to a container. Moreover, a

container can participate in the event handling mechanism and so play a part in handling user interactivity.

All of this enhanced functionality does come at the cost of some additional complexity. These extra attributes such as

the formatting object and the scrolling options must be managed and stored. The framework handles this by wrapping

each container in a controller object that comprises not only the container but also several properties related to

formatting, scrolling and other container attributes. A controller object is an instance of the

DisplayObjectContainerController class in the flashx.textLayout.container package. It is these controller objects,

sometimes called “container controllers”, that are managed directly by the flow composer.

When you have your TextFlow populated and are ready to display it on screen, use the flow composer to create a

controller object and associate it with the flow composer. Once you have the container associated, you must compose

the text before it can be displayed. Accordingly, you can think of containers as having two stages: composition and

display. Composing the text is the process of converting the text from the text flow hierarchy into TextLine instances

and calculating how those instances will fit into the container. Displaying the text involves updating the Flash Player

display list by calling the flow composer's updateAllContainers() method.

For example, the following code creates a TextFlow instance named myFlow and a controller object to display it. Once

the controller object is created, it must be associated with the TextFlow’s flowComposer property. Finally, the call to

the updateAllContainers() method causes the text to be composed and the display list to be update.

// import necessary classes
import flashx.textLayout.container.*;
import flashx.textLayout.compose.*;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.conversion.TextFilter;

// first, create a TextFlow instance named myFlow
var markup:XML = <TextFlow><p>Hello, World</p></TextFlow>;
var textFlow:TextFlow = TextFilter.importToFlow(markup, TextFilter.TEXT_LAYOUT_FORMAT);

// second, create a controller
// the first parameter, this, must point to a DisplayObjectContainer
// the last two parameters set the initial size of the container in pixels
var contr:IContainerController = new DisplayObjectContainerController(this, 600, 600);

// third, associate it with the flowComposer property
myFlow.flowComposer.addController(contr);

// fourth, update the display list
myFlow.flowComposer.updateAllContainers();

10ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

The Text Layout Conversion Component

The conversion component allows you to import text into, and export text out of, the Text Layout Framework. You

need to use this component if you plan to load text at runtime instead of compiling the text into the SWF or if you want

to export text that is stored in a TextFlow instance into a String or XML object.

Both import and export are straightforward procedures. You call either the export() method or the importToFlow()

method, both of which are part of the TextFilter class. Both methods are static, which means that you call the methods

on the TextFilter class rather than on an instance of the TextFilter class.

The conversion component provides considerable flexibility in where you choose to store your text. For example, if

you store your text in a database, you can import the text into the framework for display, use the editing component

to allow changes to the text, and export the changed text back to your database.

Importing Text

The Text Layout Framework can import either plain text or XML in the form of Text Layout Markup.

To import plain text, specify that format with the second argument that you send to the importToFlow() method. In

the following example, plain text is specified as the second argument to the importToFlow() method and the optional

third argument is omitted:

var markup:String = "Hello World, this is plain text";
var flow:TextFlow = TextFilter.importToFlow(markup, TextFilter.PLAIN_TEXT_FORMAT);

Text Layout Markup is an XML representation of text that is stored in the Text Layout Framework. The XML mirrors

the structure of the flow hierarchy and provides the highest fidelity representation of the text and formatting supported

by the framework. To import text stored in Text Layout Markup, specify TextFilter.TEXT_LAYOUT_FORMAT as the

second argument to the importToFlow() method, as shown in the following example:

var markup:XML = <TextFlow><p>Hello, World</p></TextFlow>;
var flow:TextFlow = TextFilter.importToFlow(markup, TextFilter.TEXT_LAYOUT_FORMAT);

Exporting Text

The Text Layout Framework can also export text to any of the three formats: plain text, FXG, or Text Layout Markup.

To export from an existing TextFlow instance, call the TextFilter.export() method.

The export() method contains three required parameters and one optional parameter. The first parameter is the

TextFlow instance from which you wish to export. The second parameter is which of the three formats—plain text,

FXG, or Text Layout Markup—you want to apply to the exported text. The third parameter allows you to specify the

data type of the exported text. You can choose either the type String or the type XML. The fourth and final parameter,

which is optional, allows you to specify an instance of the ImportExportConfiguration class.

The following example imports a string in plain text format and exports it to an XML object in Text Layout Markup

format:

var ptext:String = "Hello, World";
var flow:TextFlow = TextFilter.importToFlow(ptext, TextFilter.PLAIN_TEXT_FORMAT);
var out:XML = TextFilter.export(flow, TextFilter.TEXT_LAYOUT_FORMAT,

ConversionType.XML_TYPE);

11ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

Text Layout Framework Markup

Text Layout Framework Markup provides the highest fidelity representation of text in a TextFlow because the markup

language provides not only tags for each of the TextFlow hierarchy’s basic elements, but also attributes for all three

types of formatting properties (ContainerFormat, ParagraphFormat, and CharacterFormat).

The following table contains the tags that can be used in Text Layout Framework Markup.

The formatting properties, which can be found in the ContainerFormat, ParagraphFormat, and CharacterFormat

classes, can be assigned directly to an element tag as an XML attribute. For example, in the following Text Layout

Framework Markup the fontSize of the entire TextFlow is 14 and the color of the second paragraph is blue except

for the last SpanElement, which is red because the color attribute in the last SpanElement overrides the color attribute

of its parent in the hierarchy.

<flow:TextFlow xmlns:flow="http://ns.adobe.com/textLayout/2008" fontSize="14">
<flow:p>This is an example of Text Layout Framework Markup.</flow:p>
<flow:p color="#0000ff">

<flow:span>This is the first span of the second paragraph.</flow:span>
<flow:span color="#ff0000">This is the second span of the second

paragraph.</flow:span>
</flow:p>

</flow:TextFlow>;

Element Description Formats Children Class

textflow The root element of the markup. container,

paragraph,

character

div, p TextFlow

div A division within a TextFlow. May contain a

group of paragraphs.

container,

paragraph,

character

div, p DivElement

p A paragraph. May contain any of the

elements listed in the rows below.

paragraph,

character

a, tcy,

span, img,

tab, br

ParagraphElement

a A link. character tcy, span,

img, tab,

br

LinkElement

tcy A run of horizontal text (usually used in a

vertical TextFlow).

character a, span,

img, tab,

br

TCYElement

span A run of text within a paragraph. character SpanElement

img An image in a paragraph. character InlineGraphicElement

tab A tab character. TabElement

br A break character. Used for ending a line

within a paragraph; text will continue on

the next line, but remain in the same

paragraph.

BreakElement

12ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

The Text Layout Edit Component

The MVC design pattern is particularly useful when discussing the Text Layout Edit Component because the edit

component neatly embodies the functionality of the controller. The controller in the MVC design pattern encapsulates

the code responsible for handling user interactivity with the view and translating user gestures into commands that

modify the model.

The Edit component provides controller functionality by defining three classes that you can use to select text, edit text,

or undo edits to the text. The SelectionManager class defines several dozen properties and methods you can use to

manage the selection of text in your text flow. The EditManager class helps you manage requests to insert, delete, and

format text. The UndoManager class allows you to maintain a history of the user's most recent editing activities and

let the user undo or redo specific edits.

The ability to select or edit text is controlled at the TextFlow level. Every instance of the TextFlow class has an

associated interaction manager, which is defined by the TextFlow.interactionManager property. To enable

selection, assign an instance of the SelectionManager class to the interactionManager property. To enable both

selection and editing, assign an instance of the EditManager class instead of an instance of the SelectionManager class.

The Selection Manager

To make your text selectable, create an instance of SelectionManager and associate it with the interaction manager of

your TextFlow instance. For example, if you have a TextFlow instance named flow that you want to make selectable,

create a SelectionManager object and assign it to the flow TextFlow instance’s interactionManager property:

flow.interactionManager = new SelectionManager();

After a SelectionManager is assigned to a TextFlow’s interaction manager, the TextFlow has access to the

SelectionManager’s event handlers. Through these event handlers, the SelectionManager can detect not only when text

is selected or when the container gains or loses focus, but also when there is keyboard or mouse activity. The event

handlers are methods of the SelectionManager class that can be overridden if you need custom event handling

behavior.

The SelectionManager tracks selected text by managing text ranges. Theoretically, a text range can be thought of as a

series of characters. The SelectionManager, however, uses a more efficient technique to track text ranges by taking

advantage of the text flow hierarchy. Every character in the text flow hierarchy has an associated position that is relative

to the start of the text flow. A character's absolute position is an integer that describes how many characters separate

the current character from the start of the text flow. Using text positions, the SelectionManager can store text ranges

as a pair of integers, one integer for the character closest to the start of the text flow, and another integer for the

character farthest away from the start of the text flow. This is helpful for you to know because many of the properties

and methods in SelectionManager refer to “an index into the text flow”, which is equivalent to the absolute position,

or distance from the start of the text flow. Text ranges are defined by the TextRange class, which happens to have a

property named absoluteStart and another property named absoluteEnd. Both properties are integers that

represent distances from the start of the text flow. Both carry the prefix “absolute” to signify that they represent

distances from the very beginning of the text flow as opposed to the prefix “relative”, which represents distances from

an arbitrary FlowElement elsewhere in the text flow.

13ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

The Edit Manager

To enable selection and editing, create an instance of the EditManager class and associate it with the interaction

manager of the TextFlow instance. For example, to enable editing for a TextFlow instance named flow, use the

EditManager class:

flow.interactionManager = new EditManager();

The EditManager class is slightly more complex than the SelectionManager class because it must manage inserting,

editing and formatting text. Rather than merely tracking selection ranges, the EditManager must manage a series of

edits done by the user. To facilitate the management of these edits, the EditManager class creates a FlowOperation

object to represent each edit. Every time a user initiates an insertion, edit, or formatting change, EditManager creates

an instance of a FlowOperation subclass to represent that edit. The FlowOperation object encapsulates the code

necessary not only to carry out the operation, but also to undo it. For example, if a user inserts text, EditManager

creates an instance of the InsertTextOperation class, which inherits from the FlowOperation class.

Prior to executing an operation, EditManager dispatches an event object. Specifically, an instance of the

FlowOperationEvent class, with its type property set to FlowOperationEvent.FLOW_OPERATION_BEGIN. This allows

you to monitor when an operation is about to begin and to cancel the operation by calling Event.preventDefault().

This method is so named because an event can have an associated default behavior. For example, when text is inserted

into a TextRange, an event object that represents the text insertion is dispatched before the text is actually inserted.

That event object is said to have a default behavior that the text will be inserted into the TextRange because unless you

take action to prevent that default behavior, the text will be inserted. There are a wide range of default behaviors

associated with editing tasks such as text insertion, keyboard shortcuts, and menu selections like cut, copy and paste.

All of these default behaviors can be prevented by calling the Event.preventDefault() method in your event

handler function.

Because all operations generate the same type of event—a FlowOperationEvent instance of type

FLOW_OPERATION_BEGIN—you will not know which operation is about to execute unless you check the operation

property of the FlowOperationEvent class. The operation property stores a reference to the associated

FlowOperation object.

After executing an operation, EditManager also dispatches an event object. The event object is also an instance of the

FlowOperationEvent class, but its type property is set to FlowOperationEvent.FLOW_OPERATION_END. You can

check whether an error was thrown during the execution of the operation by checking the error property of the

FlowOperationEvent object. If an error occurs during the execution of an operation, EditManager stores a reference

to that error in the error property of the event object before dispatching the event object. This gives you an

opportunity to prevent Flash Player from throwing the error by calling Event.PreventDefault() on the

FlowOperationEvent.

The Undo Manager

The UndoManager allows your user to undo and redo edits. Each EditManager has an associated UndoManager. To

associate a specific UndoManager with an EditManager, create an instance of the UndoManager class and pass that

instance as an argument to the EditManager constructor. This allows you to share a single UndoManager with multiple

EditManagers, which means that a single UndoManager will manage multiple TextFlows. For example, to use the same

UndoManager for two TextFlow instances named flow1 and flow2, pass the same UndoManager instance as the sole

argument to the EditManager constructors:

var undoMgr:UndoManager = new UndoManager();
flow1.interactionManager = new EditManager(undoMgr);
flow2.interactionManager = new EditManager(undoMgr);

14ADOBE ACTIONSCRIPT 3.0 COMPONENT WHITE PAPER

Text Layout Framework Overview

If you create an EditManager without specifying an UndoManager, the framework automatically creates an

UndoManager that is specific to that TextFlow. For example, in the following example, each flow has its own distinct

UndoManager:

flow3.interactionManager = new EditManager();
flow4.interactionManager = new EditManager();

The UndoManager creates two stacks to track editing history. When an operation is executed the UndoManager

pushes that operation onto the undo stack. If the user chooses to undo the operation, UndoManager removes, or pops,

the operation from the undo stack and pushes it onto the redo stack. The size of the stacks can be configured with the

UndoManager's undoAndRedoItemLimit property. If the size limit is reached, older operations are removed from the

stack.

	Contents
	Text Layout Framework Overview
	The Challenge of Typography on the Web
	How TextField has Pushed the Envelope
	What the New Text Layout Framework Offers
	Complex Script Support
	Advanced Typographic and Layout Features
	Flash Player 10 Required

	The Structure of the Text Layout Framework
	Architecture of the Text Layout Framework
	The Text Layout Core Component
	Text Flow Hierarchy
	Formats and FlowElements
	Displaying Text
	Rendering with TextLineFactory
	Rendering with Flow Composer

	The Text Layout Conversion Component
	Importing Text
	Exporting Text
	Text Layout Framework Markup

	The Text Layout Edit Component
	The Selection Manager
	The Edit Manager
	The Undo Manager

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

